El enigma de Fermat



El enigma de Fermat. La historia de un teorema que intrigó durante más de trescientos años a los mejores cerebros del mundo.

Simon Singh

Editorial Planeta, S. A. 2003

Páginas 123 a 128.
   Tras el impulso de Sophie Germain, la Academia Francesa de las Ciencias ofreció una serie de premios, entre ellos una medalla de oro y tres mil francos, para el matemático que acabara por fin con el misterio del último teorema de Fermat. Además del prestigio de demostrar el último teorema de Fermat, ahora se unía al desafío una gratificación inmensamente valiosa. Los salones de París rebosaban de habladurías sobre quién estaba adoptando una estrategia u otra y lo cerca que andaba de anunciar una solución. Entonces, el 1 de marzo de 1847, la Academia celebró su sesión más espectacular.
   Las actas describen cómo Gabriel Lamé, que había demostrado el caso de n = 7 algunos años antes, subió al estrado y, ante los matemáticos más eminentes de la época, proclamó que estaba a punto de probar el último teorema de Fermat. Admitió que la demostración estaba aún incompleta, pero perfiló su método y vaticinó con entusiasmo que en las próximas semanas publicaría una prueba completa en la revista de la Academia.
   Dejó pasmada a toda la audiencia, y tan pronto como Lamé abandonó la tarima, Augustin Louis Cauchy, otro de los matemáticos más destacados de París, pidió permiso para hablar. Cauchy comunicó a la Academia que había estado trabajando en una línea parecida a la de Lamé y que también él estaba al borde de publicar una demostración absoluta.
   Tanto Cauchy como Lamé se percataron de que la clave estaba en el tiempo. El primero en presentar una demostración recibiría el premio de mayor valor y prestigio de las matemáticas. Si bien ninguno de los dos poseía una demostración completa, ambos rivales ansiaban hacer valer de algún modo sus derechos, así que, justo tres semanas después de que hubieran hecho sus anuncios respectivos, depositaron sendos sobres lacrados en la Academia. Se trataba de una práctica habitual de aquella época que permitía a los matemáticos registrar su investigación sin revelar los detalles exactos. Si mas tarde surgía una disputa relativa a la originalidad de las ideas, un sobre sellado demostraría la evidencia necesaria para establecer prioridades.
   La expectación aumentó en abril, cuando Cauchy y Lamé publicaron en las actas de la Academia tentadores detalles, aunque vagos, de sus pruebas. Si bien la comunidad matemática al completo estaba desesperada por ver terminada la demostración, muchos de sus miembros deseaban en secreto que fuera Lamé y no Cauchy quien ganara la carrera. A decir de todos, Cauchy era una criatura hipócrita, un fanático religioso y nada querido entre sus compañeros. Si la Academia lo aguantaba era sólo por su brillantez.
   El 24 de mayo se difundió un comunicado que acabó con la especulación. No fue Cauchy ni tampoco Lamé quien se dirigió a la Academia, sino Joseph Liouville. Liouville impactó a la audiencia cuando leyó en voz alta el contenido de una carta que tenía por remitente al matemático alemán Ernst Kummer.
   Kummer era un teórico de números del más alto nivel, pero el furioso patriotismo que su odio hacia Napoleón despertó en él lo apartó de su auténtica vocación durante gran parte de su carrera. Cuando era niño, el ejército francés invadió su ciudad natal, Sorau, y trajo consigo una epidemia de tifus. A su padre, que era el médico del municipio, la enfermedad se lo llevó en cuestión de semanas. Traumatizado por la experiencia, Kummer se juró hacer todo lo posible para defender su país de ataques ulteriores y, tan pronto como acabó la universidad, dedicó su inteligencia al problema del trazado de trayectorias de las balas de cañón. Con el tiempo enseñó las leyes balísticas en la Escuela de Guerra de Berlín.
   Paralelamente a la dedicación bélica, Kummer se entregó de forma activa a la investigación en matemáticas puras y había permanecido muy atento a la epopeya que se había puesto en marcha en la Academia Francesa. Había repasado las actas de principio a fin y analizado los pocos detalles que Cauchy y Lamé se habían atrevido a revelar. Para Kummer era obvio que los dos franceses se encaminaban hacia un mismo callejón sin salida lógico y explicó sus razones en la carta que envió a Liouville.
   Según Kummer, el problema fundamental residía en que las demostraciones de ambos, Cauchy y Lamé, se basaban en la utilización de una propiedad de los números conocida como factorización unívoca. La factorización unívoca establece que sólo existe una combinación posible de números primos tal que al multiplicarlos entre sí dan como resultado un número determinado. Por ejemplo, la única combinación de números primos que multiplicados dan el número 18 es la que sigue:
18 = 2 x 3 x 3
De un modo semejante, los números siguientes se factorizan tan sólo de estas maneras:
35 = 5 x 7
180 = 2 x 2 x 3 x 3 x 5
106 260 = 2 x 2 x 3 x 5 x 7 x 11 x 23
   La factorización unívoca fue descubierta allá por el siglo IV a. J.C. por Euclides, quien probó que es cierta para todos los números cardinales, y describió la demostración en el libro IX de sus Elementos. El hecho de que la factorización unívoca se cumpla con todos los números cardinales es un elemento esencial para otras muchas demostraciones y hoy en día se lo denomina el teorema fundamental de la aritmética.
   A primera vista no habría ninguna razón por la que Cauchy y Lamé no debieran basarse en la factorización unívoca, como cientos de matemáticos habían hecho antes que ellos. Pero por desgracia ambas demostraciones incluían números imaginarios. Si bien la factorización unívoca es cierta para los números reales, Kummer señaló que no tenía por qué cumplirse cuando se introducen números imaginarios. A su entender, esto constituía una fisura fatal.
   Si por ejemplo nos limitamos a los números reales, entonces el 12 solo puede factorizarse como 2x2x3. Sin embargo, si admitimos los números imaginarios en la demostración, entonces el número 12 podría ser factorizado además en la manera que sigue:
 12=(1+√-11)x(1-√-11)
Aquí (1+√-11) es un número complejo, la combinación de un número real y de otro imaginario. Aunque el proceso de multiplicación es más enrevesado que con los números ordinarios, la existencia de los números complejos proporciona otros caminos para factorizar el número 12. Otra manera de factorizar ese número es (2+√-8)x(2-8). Así que ya no hay una única factorización, sino un surtido de ellas.
   Esta pérdida de la factorización unívoca perjudicó en gran medida las pruebas de Cauchy y de Lamé, pero no por ello las destruyó del todo. Se suponía que las demostraciones concluían que no existían soluciones para la ecuación xn+yn=zn, donde n representa cualquier número mayor que dos. Como ya hemos comentado con anterioridad en este capítulo, bastaba con que las pruebas se cumplieran tan sólo con los valores primos de n. Kummer mostró que empleando otras técnicas era posible restablecer la factorización unívoca para algunos valores de n. Por ejemplo, el problema que ofrecía la factorización unívoca podía esquivarse para todos los números primos menores o iguales que n=31. En cambio, al número primo n=37 no se le podía hacer frente con tanta facilidad. Del resto de primos inferiores a 100, otros dos, n=59 y n=67, eran también números difíciles. Estos primos, denominados irregulares, que están salpicados entre el resto de los números primos, constituían ahora el muro que bloqueaba la demostración absoluta.
   Kummer señaló que nada en las matemáticas conocidas podría atajar todos aquellos primos irregulares de un solo golpe. Sin embargo, sí creía que, mediante cuidadosas técnicas hechas a medida para cada primo irregular concreto, podrían ser doblegados uno tras otro. Elaborar esas técnicas expresas constituiría un ejercicio lento y penoso, aún más si tenemos en cuenta que el número de primos irregulares sigue siendo infinito. Eliminarlos de forma individual ocuparía a toda la comunidad mundial de matemáticos por toda la eternidad.
   La misiva de Kummer tuvo efectos devastadores en Lamé. Considerándolo a posteriori, la adopción de la factorización unívoca puede verse, en el mejor de los casos, demasiado optimista y, en el peor de ellos, temeraria. Lamé se dio cuenta de que si hubiera sido más franco con su trabajo podría haber reparado antes en el error, y en una carta que envió a su colega Dirichlet en Berlín escribió: «Sólo con que usted hubiera estado en París o yo hubiera estado en Berlín nada de esto habría ocurrido.»
   Mientras que Lamé se sintió humillado, Cauchy se negó a aceptar la derrota. Vio que, comparado con la demostración de Lamé, su planteamiento se apoyaba menos en la factorización unívoca y que en tanto no se revisara la totalidad del análisis de Kummer cabía la posibilidad de que fuera erróneo. Continuó publicando artículos sobre el asunto durante varias semanas, pero al final del verano también él enmudeció.
   Kummer había demostrado que una prueba completa del último teorema de Fermat se hallaba fuera del alcance de los enfoques matemáticos al uso. Fue una brillante muestra de lógica matemática, pero un pesado golpe para toda una generación de matemáticos que habían saboreado la posibilidad de resolver el problema más arduo del mundo.
   El mismo Cauchy resumió la situación cuando en 1857 redactó el informe de la Academia sobre la clausura del galardón para el último teorema de Fermat:
Informe referente al certamen para el gran premio en ciencias matemáticas. Convocado ya en el concurso de 1853 y prorrogado hasta 1856.
Se han presentado once memorias al secretario, pero ninguna ha resuelto la cuestión planteada. De este modo, el asunto permanece en el mismo estado en que lo dejó monsieur Kummer. No obstante, las ciencias matemáticas deberían congratularse por los trabajos acometidos por los geómetras con el deseo de resolver la cuestión, en especial el de monsieur Kummer. La comisión considera, por lo tanto, que la Academia tomaría una decisión honorable y útil si, una vez suspendida la competición, concediera la medalla a monsieur Kummer por sus bellas investigaciones acerca de los números complejos, formados por enteros y raíces de la unidad.






Esta vez el texto elegido es largo pero está muy bien expresado.

Ernst Kummer nació el 29 de enero de 1810.